
Lecture 02: 
Convolutional Neural Networks 

and Variants
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Course Information
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested 

in auditing the class. However, enrolled students are required 
to attend in person unless special condition.

● A suggested reading list which contains interesting papers can 
be found here.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/98290357807?pwd=3AQiwdtdVatqVdRgAe3tURfvvtcUAX.1&jst=2
https://docs.google.com/spreadsheets/d/14C0DwQ5g_wLgQQe9PPRQOfT0sHmLNOq-df5Xewft_lI/edit?usp=sharing
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Recap
● DNN basics

○ Multilayer perceptron
■ Linear layer, activation function, softmax layer

○ Loss functions
○ Weights decay
○ Dropout
○ Optimizer
○ Learning rate scheduler
○ Weight Initialization
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ VGG
■ ResNet
■ MobileNet
■ ShuffleNet
■ SqueezeNet
■ DenseNet
■ EfficientNet
■ ConvNext
■ ShiftNet

○ CNN architectures for other vision tasks
■ Image Segmentation, Object Detection
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Convolutional Neural Networks
● Convolutional Neural Networks (CNNs) are a type of artificial neural network 

designed for processing structured grid data, such as images. They're particularly 
effective in tasks like image recognition, object detection and segmentation.

● The building blocks of a CNN includes:
○ Convolutional layer
○ Activation layer
○ Normalization layer
○ Pooling layer
○ Softmax layer
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Convolutional Neural Networks
● Convolutional Neural Networks (CNNs) are a type of artificial neural network 

designed for processing structured grid data, such as images. They're particularly 
effective in tasks like image recognition, object detection and segmentation.

● The building blocks of a CNN includes:
○ Convolutional layer
○ Activation layer
○ Normalization layer
○ Pooling layer
○ Softmax layer C
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Convolutional Layers: Terminology

● Core building block of a CNN, it is also the most computational intensive layer.

Conv

Filter Output feature map
Output activation

Input feature maps
Input activation

H

W

C

Kernel

Feature 
map
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Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Conv  = 

 * 

  = * 

 * 
Filter Output feature mapInput feature maps
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Convolutional Layers

 =  +  + 

Step 2
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by summing the 
Convolutional feature maps together.

● A bias may be introduced.
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2D Convolution: An Example
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Paddings
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preserved the spatial size 
of the output features.
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Stride

padding = 0, stride = 1 padding = 1, stride = 1padding = 0, stride = 2 padding = 1, stride = 2

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
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Summary
● Hout = (Hin−K+2P)/S+1
● Hin and Hout are the spatial sizes of the input and convolutional feature maps.
● K is the weight kernel size
● P is the padding size
● S is the stride
● For example:

○ For input size of 224x224x3, weight kernel size is 3x3, padding size is 1 
and stride size is 1, then the output size is (224-3+2)/1 + 1 = 224.

 *  = K
K

Hin

Hin

Hout

Hout
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Computational Cost

 =  +  + 

Step 2
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by summing the 
Convolutional feature maps together.

● A bias may be introduced.

Convolutional 
feature maps * 
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 * 

 = 

  =

Step 1

Computational cost in Multiply–accumulate operations (MAC): E✖F✖K✖K✖C
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Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
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Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K
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Receptive Field of CNN across Layers
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● Assume a kernel size of 3 by 3.
● Every elements at layer i is a function of the entire receptive fields of the previous layers.
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Activation Functions: ReLU
● Rectifier linear operation (ReLU) applies an elementwise activation function to the 

output feature maps.              
● This leaves the size of the output feature maps unchanged.
● f(x) = x if x > 0, f(x) = 0 otherwise. 
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Activation Functions: GeLU

● Gaussian error linear unit (GeLU):

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 (2016).

● GeLU is increasingly being adopted in 
transformers and CNNs today.
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Xc

X: HW ✕ B ✕ C

B

Yc

B

Y: HW ✕ B ✕ C

Batch 
Normalization

Ioffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv 
preprint arXiv:1502.03167 (2015).

Batch Normalization

● Batch Normalization (BatchNorm) is a technique used in deep learning to improve the training stability 
and performance of neural networks.
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Batch Normalization

● For each channel c, we have:
○ Xc: (HW x B)
○ μc and δc are the mean and standard deviation of Xc.
○ αc and βc are learnable parameters
○ αc, βc, μc, δc are scalers

● Overall, we have:
○ μ, δ, α and β all have a length of of C
○ μ, δ, α and β are all fixed during the inference
○ μ, δ are statistics based on the training dataset

Xc

X: HW ✕ B ✕ C

B

x
For each c∈C
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 XM

Batch Normalization: During Inference
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● pc can be merged into the CNN weights.
● qc can be merged into the CNN bias.
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...

● Given all the parameters are fixed, for each channel c, we have:
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Batch Normalization
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● For each channel c, we have:

✖ p1

✖ p2

✖ pM

Conv

● We can fold in the p and q to 
the weights and bias of 
convolutional layer during 
inference and reduce the online 
computational cost.
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Batch Normalization
● For each channel c, we have:

● We can fold in the p and q to the weights and bias of convolutional layer during 
inference and reduce the online computational cost.
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Pooling
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● Enhance the model invariance to spatial transformations such as translation and rotation, thereby 
reducing the risk of overfitting.

● Reduce the spatial size of the representation and reduce the amount of parameters and 
computation in the CNN.
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Strided Convolution As Pooling Layer
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Fully Connected Layers
● Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular neural networks. 

● Normally used in the last several layers to 
generate the classification results.
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CNN Architecture for Image Classification Task
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● For image classification task, during the forward propagation of CNN, the spatial 
size reduces while the number of channels increases.

Input Feature Maps

(1,10)



36

Interpretation of Convolutional Features

● Each layer progressively extracts higher level features of the input 
image, until the last layer which aggregates all the high-level 
abstraction and makes a final decision.

● Early CNN layers tend to focus on detecting the local features (e.g., 
edge or corner in the image), whereas later layers usually look for 
the high-level abstractions (e.g., shapes of the object in the image)

Yosinski, Jason, et al. "Understanding neural networks through deep visualization." arXiv preprint arXiv:1506.06579 
(2015).
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ VGG
■ ResNet
■ MobileNet
■ ShuffleNet
■ SqueezeNet
■ DenseNet
■ EfficientNet
■ ConvNext
■ ShiftNet

○ CNN architectures for other vision tasks
■ Image Segmentation, Object Detection
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VGG

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv 
preprint arXiv:1409.1556 (2014).

● The key contribution was demonstrating that depth and the use of very small convolutional 
kernels (3×3) were crucial for dramatically improving image recognition performance, establishing a 
simple and scalable architecture that became foundational in deep learning research.

● Achieves 75%-76% accuracy on ImageNet, which is much higher than other networks at that time 
(AlexNet: 62.5%).
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ResNet

● When deeper networks are able to start converging, a degradation problem has been exposed: with the 
network depth increasing, accuracy gets saturated and then degrades rapidly.

● By introducing the residual link, we reduce the complexity of the learning process by ensuring that the 
performance is at least as good as the shallower DNN.

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.
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ResNet

Conv 1x1

● A straightforward strided convolutional layer may also be added to both 
branches when subsampling the output.
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ResNet Bottleneck Design

Basic block Bottleneck block

● For deeper ResNet, the bottleneck block is used.
● The three layers are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers reduces the output 

channel dimension.

Total params: 
3✖3✖64✖64 + 
3✖3✖64✖64 =73728

Total params: 
1✖1✖256✖64 + 3✖3✖64✖64 
+ 1✖1✖64✖256 = 69632
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ResNet 18 

● ResNet-18 is partitioned into several stages, across two consecutive stages, the 
output channels doubles, and the spatial size is 2x2 subsampled.

Stage 2Stage 1 Stage 3 Stage 4
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ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.
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ResNet Performance

Performance on ImageNet

Performance on CIFAR-10
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ResNet Implementation
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ResNet Implementation
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Wide ResNet

Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." arXiv preprint arXiv:1605.07146 (2016).

● How ResNet should scale? Increase depth or increase width?
● Wide networks with only 16 layers can significantly outperform 1000-layer deep networks on CIFAR, as 

well as that 50-layer outperform 152-layer on ImageNet.
● The main power of residual networks is in residual blocks, and not in extreme depth as claimed earlier.
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Wide ResNet

Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." arXiv preprint arXiv:1605.07146 (2016).

● ResNet with wider architecture 
achieves a better performance 
than deeper architectures.
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MobileNet

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint 
arXiv:1704.04861 (2017).
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MobileNet

 = 

 * 

  = * 

 * 

 = 

  =

 +  + 

Step 1 Depthwise Convolution
● Each kernel moves across the spatial 

dimensions of feature maps in the input 
activations, analyzing the information 
within those spatial dimensions.

● The information from each feature maps 
are then aggregated by multiplying with 
the weight in the pointwise conv kernel 
and summing the Convolutional feature 
maps together.

● A bias may be introduced.
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Standard Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K
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Depthwise Separable Convolution
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● Number of MACs: K✕K✕C✕E✕F + M✕C✕E✕F
● Storage cost: 32✕(C✕H✕W+C✕K✕K+C✕E✕F+M✕C+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps
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Why Depthwise Conv is Cheaper?

● With a batch size of B, number of MACs are:
● Number of MACs: B✕K✕K✕C✕E✕F + B✕M✕C✕E✕F
● Storage cost: 32✕(B✕C✕H✕W+C✕K✕K+B✕C✕E✕F+M✕C+B✕M✕E✕F)

● Number of MACs for depthwise separable Conv: K✕K✕C✕E✕F + M✕C✕E✕F
● Number of MACs for standard Conv: M✕K✕K✕C✕E✕F
● When M is large the computational saving is about K✕K (9) times.



54

MobileNet-V2

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2018.

● Add residual link between the 
blocks.

● Adopt ReLU6 replace ReLU.
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MobileNet Implementation

Standard MobileNet
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MobileNet V2 Implementation

Standard MobileNet
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Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural 
networks." Communications of the ACM 60.6 (2017): 84-90.
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● The original MAC: E✕F✕K✕K✕C✕M
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Group Convolution

 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." 
Communications of the ACM 60.6 (2017): 84-90.
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● Group size = 2
● Each group of feature maps within the input only convolved with partial weight kernels.
● This will lead to a large saving on memory consumption and computational cost.
● The number of MAC: E✕F✕K✕K✕C✕M/G
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ShuffleNet

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2018.

Conv

Conv

Conv

Conv

Conv

Conv

● Group convolution prevents feature 
maps from different groups from 
exchanging information.
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ShuffleNet

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2018.

shuffle

● The shuffle operation is used to 
exchange the information across 
the groups.

● The shuffle operation with group 
convolution can replace the 
conventional full-channel 
convolution without noticeable 
accuracy degradation.

● A predetermined pattern is applied 
for the shuffling operations.

Conv

Conv

Conv
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ShuffleNet

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2018.
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ShuffleNet

● G is the group size, a✕ is the scaling factor on number of channels.
● Shuffling operation can greatly improve the accuracy.
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ShuffleNet

● Under the same level of computational complexity, shufflenet is better than 
MobileNet.
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).

● Achieves great accuracy with 50x smaller 
parameters than other baselines (4.8MB).

● Some strategies: 
○ Replace 3x3 filters with 1x1 filters.
○ Decrease the number of input channels to 

3x3 filters.
○ Downsample late in the network so that 

convolution layers have large activation 
maps.

● Aims to reduce the CNN parameter size, not 
computational cost.
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).
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SqueezeNet
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SqueezeNet

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." arXiv 
preprint arXiv:1602.07360 (2016).

● Achieve a comparable performance as AlexNet, but still suboptimal compare against other 
architectures.

● ResNet 50: 100MB, Vision Transformer base> 300MB. 
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DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.

● ResNet:

● DeseNet:

● H(.) is the function of batch 
normalization, followed by ReLU and 3x3 
Convolution.
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DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.
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DenseNet Implementation
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DenseNet

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2017.
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EfficientNet

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International 
conference on machine learning. PMLR, 2019.

● It is critical to balance all dimensions of network width/depth/resolution, and surprisingly such balance 
can be achieved by simply scaling each of them with constant ratio.
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EfficientNet

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International 
conference on machine learning. PMLR, 2019.

● SiLU is used in the EfficientNet architecture.
● SiLU(x) = x∗σ(x)
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ConvNext
● Leverage the insight of vision transformer (Swin-T) to enhance 

the performance of CNN.
● Some major changes to change ResNet 50 to ConvNext 50:

○ Change number of blocks in each stage from (3, 4, 6, 3) 
in ResNet-50 to (3, 3, 9, 3).

○ Use depthwise separable convolution
○ Large convolutional kernel.
○ Replacing ReLU with GELU
○ Substituting BN with LN.

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2022.
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ConvNext

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2022.

● For larger Swin Transformers, the ratio is 1:1:9:1. 
Following the design → we adjust the number of 
blocks in each stage from (3, 4, 6, 3) in ResNet-50 to 
(3, 3, 9, 3).

● One of the most distinguishing aspects of vision 
Transformers is their non-local self-attention, which 
enables each layer to have a global receptive field, 
so we increase the window size to 7×7.

● Replacing ReLU with GELU: One discrepancy 
between NLP and vision architectures is the specifics 
of which activation functions to use. 
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ConvNext

Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2022.

● ConvNext achieves a much better 
accuracy under the same amount of 
parameters and computation budgets.
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ShiftNet

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2018.

● However, depthwise convolution still needs to read the same amount of input data 
(B×C×W×H), so on systems limited by memory bandwidth this operation remains 
slow.

● Number of MACs for depthwise separable Conv: K✕K✕C✕E✕F + M✕C✕E✕F
● Number of MACs for standard Conv: M✕K✕K✕C✕E✕F
● When M is large the computational saving is about K✕K (9) times.



78

ShiftNet

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2018.

● Completely remove the computation for the 
depthwise convolution.

● The shift positions are predefined for each 
channel.
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ShiftNet

Wu, Bichen, et al. "Shift: A zero flop, zero parameter alternative to spatial convolutions." Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2018.

Shift Left

No Shift

Shift Down

zeros
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ShiftNet
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Deformable Convolutional Networks

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer 
vision. 2017.

● Convolutional neural networks (CNNs) 
are inherently limited to model geometric 
transformations due to the fixed 
geometric structures in their building 
modules.

● This paper proposed the “learnable 
weight kernel shape”.
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Deformable Convolutional Networks

Dai, Jifeng, et al. "Deformable convolutional networks." Proceedings of the IEEE international conference on computer 
vision. 2017.

Can be fractional
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Deformable Convolutional Networks
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Topics
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ VGG
■ ResNet
■ MobileNet
■ ShuffleNet
■ SqueezeNet
■ DenseNet
■ EfficientNet
■ ConvNext
■ ShiftNet

○ CNN architectures for other vision tasks
■ Image Segmentation, Object Detection
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CNNs for Other Tasks: Image Segmentation
Fully Convolutional Networks

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2015.

● A fully convolutional based DNN for 
image segmentation.

● Input: H✖W✖3 → Output: H✖W✖C

● Image segmentation is a computer vision technique used to divide an image into multiple 
segments or regions, each representing a different object, part of an object, or background. 

● The goal of image segmentation is to simplify or change the representation of an image into 
something more meaningful and easier to analyze.
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Segmentation
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Segmentation
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● Segmentation is a pixel-level task in which each pixel is assigned an output label.
● The loss function (cross-entropy loss) is applied on each pixel.
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U-Net

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." 
International Conference on Medical image computing and computer-assisted intervention. Cham: Springer international 
publishing, 2015.

● The direct path sends feature maps from 
the encoder directly to the 
corresponding decoder layers, allowing 
the decoder to recover spatial precision.

● This stabilizes training and improves 
convergence.
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Transposed Convolution

Stride = 1 Stride = 2

● To upsample the input, we can apply transposed convolution.

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html
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Focal Loss
● A modified cross-entropy designed to perform 

better with class imbalance.
● Often used in the problem of object detection 

and image segmentation.
○ Down-weight easy examples and thus focus training 

on hard negatives

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer 
vision. 2017.

● γ controls the shape of the curve
● a controls the class imbalance and introduce 

weights to each class.
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Dice Loss

Sudre, Carole H., et al. "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations." 
International Workshop on Deep Learning in Medical Image Analysis. Cham: Springer International Publishing, 2017.

● pi : predicted probability for pixel i.
● gi: ground truth label (0 or 1) for pixel i.
● ϵ: small constant to avoid division by zero.

● The Dice loss is widely used in segmentation tasks (especially in medical imaging) 
where class imbalance is common.

A B

Ground truth

Predicted
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CNNs for Other Tasks: Object Detection

● NN will generate the likelihood 
of each anchor point and the 
coordinates of its bounding box.

● Another branch will produce the 
category of each bounding box
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CNNs for Other Tasks: Object Detection

(X1,Y1)

(X2,Y2)

(1xC) 

● The bounding box is defined by its top-left and bottom-right coordinates, 
and the object detection network also outputs a 1×C classification vector.

Object 
detection

(X1,Y1),(X2,Y2)

C

B
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CNNs for Other Tasks: Video Processing

● To process video, we can concatenate 
the consecutive frames together and 
use 2D convolution to process it.


